Multimodal Mood Classification - A Case Study of Differences in Hindi and Western Songs

نویسندگان

  • Braja Gopal Patra
  • Dipankar Das
  • Sivaji Bandyopadhyay
چکیده

Music information retrieval has emerged as a mainstream research area in the past two decades. Experiments on music mood classification have been performed mainly on Western music based on audio, lyrics and a combination of both. Unfortunately, due to the scarcity of digitalized resources, Indian music fares poorly in music mood retrieval research. In this paper, we identified the mood taxonomy and prepared multimodal mood annotated datasets for Hindi and Western songs. We identified important audio and lyric features using correlation based feature selection technique. Finally, we developed mood classification systems using Support Vector Machines and Feed Forward Neural Networks based on the features collected from audio, lyrics, and a combination of both. The best performing multimodal systems achieved F-measures of 75.1 and 83.5 for classifying the moods of the Hindi and Western songs respectively using Feed Forward Neural Networks. A comparative analysis indicates that the selected features work well for mood classification of the Western songs and produces better results as compared to the mood classification systems for Hindi songs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mood Classification of Hindi Songs based on Lyrics

Digitization of music has led to easier access to different forms music across the globe. Increasing work pressure denies the necessary time to listen and evaluate music for a creation of a personal music library. One solution might be developing a music search engine or recommendation system based on different moods. In fact mood label is considered as an emerging metadata in the digital music...

متن کامل

Cross-cultural Music Mood Classification: A Comparison on English and Chinese Songs

Most existing studies on music mood classification have been focusing on Western music while little research has investigated whether mood categories, audio features, and classification models developed from Western music are applicable to non-Western music. This paper attempts to answer this question through a comparative study on English and Chinese songs. Specifically, a set of Chinese pop s...

متن کامل

Automatic Music Mood Classification of Hindi Songs

The popularity of internet, downloading and purchasing music from online music shops are growing dramatically. As an intimate relationship presents between music and human emotions, we often choose to listen a song that suits our mood at that instant. Thus, the automatic methods are needed to classify music by moods even from the uploaded music files in social networks. However, several studies...

متن کامل

Being Politically Impolite: A Community of Practice (CofP) Analysis of Invective Songs of Western Nigerian Politicians

Earlier linguistic studies of political discourse revealed that, not many works exist on pragmatic analysis of impoliteness in this genre. Apart from Mullany (2002), who employs relational and face works to analyses impoliteness in political discourse, Taiwo (2007), Adetunji (2009), and Ademilokun (2015), who employ discourse analytical tools in analyzing the political speeches, there exist ver...

متن کامل

Automatic Mood Classification of Indian Popular Music

Music has been an inherent part of human life when it comes to recreation; entertainment and much recently, even as a therapeutic medium. The way music is composed, played and listened to has witnessed an enormous transition from the age of magnetic tape recorders to the recent age of digital music players streaming music from the cloud. What has remained intact is the special relation that mus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016